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Using a microscopic model for stochastic transport through a single quantum dot that is modified by the
Coulomb interaction of environmental �weakly coupled� quantum dots, we derive generic properties of the full
counting statistics for multistable Markovian transport systems. We study the temporal crossover from multi-
modal to broad unimodal distributions depending on the initial mixture, the long-term asymptotics and the
divergence of the cumulants in the limit of a large number of transport branches. Our findings demonstrate that
the counting statistics of a single resonant level may be used to probe background charge configurations.
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I. INTRODUCTION

The coexistence of several stationary states for a given set
of parameters is typically referred to as the phenomenon of
multistability. Multistable behavior is found in a wide variety
of systems in different disciplines of science, as, e.g.,
biology,1 chemistry,2 neuroscience,3 laser physics,4 and semi-
conductor physics.5

In transport systems, multistability is characterized by the
existence of more than two distinct branches in the transport
characteristics with hysteresis and switching in between.
Some prototype examples for corresponding electronic sys-
tems are superlattices,6 double-barrier resonant tunneling
diodes,7 and nanoelectromechanical systems.8 If the transport
is entirely governed by stochasticity, e.g., as in single-
electron transport,9 the current alone might not reveal the
multistable character and other more sensitive tools are re-
quired. As has been shown for bistable systems,10,11 the
counting statistics12 may serve as such a tool. Recently, in
Ref. 13 the measurement of a bimodal distribution of quan-
tum dot tunneling has indicated the interplay of fast and slow
transport channels not visible in the current.

In this work, we present a generic approach to study Mar-
kovian transport systems with multistable behavior. Starting
from a microscopic model for one transport channel with an
environmental control system we derive a master equation
for counting statistics with an arbitrary number of transport
branches. The resulting Liouville superoperator has a simple
and scalable block-tridiagonal structure. Even though there
exists a unique steady state, the counting statistics and
higher-order cumulants display clear signatures of multista-
bility such as multimodal or broad distributions and diverg-
ing cumulants. We provide results for the temporal evolution
and long-term asymptotics of the statistics and discuss the
limit of a large number of coexisting current branches ana-
lytically. We emphasize that our approach is not restricted to
electrons as transferred entities, in principle, stochastic mul-
tistable transport of any countable object can be studied by
this means.

II. ILLUSTRATIVE PICTURE

A single transport channel �single resonant level quantum
dot� influenced by k background charges distributed on a

collection of N sites will experience an effective shift of its
charged energy state ��d→�d+kU, where U is the Coulomb
repulsion�. Attaching two reservoirs �L ,R� held at different
chemical potentials �see Fig. 1�a�� will now induce transport
through the dot at rate �, which strongly depends on the
number of background charges. Effectively, this leads to
shifted currents in the transport channel

Ik =
�

2
�fL��d + kU� − fR��d + kU�� , �1�

where fL,R���= �1+e+����V/2��−1 denote the Fermi functions
of the respective reservoir with bias voltage V, see Fig. 1�b�.
Coupling the background charges to different reservoirs L̄, R̄
with rate �	� will cause slow random switching between
the different transport channels Ik �for two currents k=0,1
known as random telegraph noise14�. When the lead tem-
perature is comparable to the Coulomb interaction �−1�U,
this gives rise to a pronounced region of multistability
around V��2�d+NU in the current-voltage characteristics,
see Fig. 1�b�. In this region, the second-order cumulant of the

FIG. 1. �Color online� �a� Scheme of the model. �b� Region of
multistability: current-voltage �transport� characteristics for N=7
control dots; thin red curves: N+1 individual currents Ik �k
=0,1 , . . . ,7�, thick blue line: average current �I� which is actually
observed; borders of colored regions: standard deviation

c���I2�� /2 of the current which becomes divergent for �→0 in
the multistability region. Inset: broad unimodal distribution function
log�P� / t vs current for large times and V�=7 �thick blue curve�;
distributions for individual currents Ik �thin red curves�. Parameters:
N=7, �d=3, �=3, U=0.15, and � /�=0.001.
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current ��I2�� diverges for �→0 as indicated. The inset
shows the corresponding broad long-term distribution of cur-
rents at V� in comparison with the distributions of individual
currents.

III. MICROSCOPIC MODEL

A. Hamiltonian

We consider the total Hamiltonian

H = �dd†d + 	
i=1

N

�idi
†di + 	

i=1

N

	
j=i+1

N

Uijdi
†didj

†dj + 	
i=1

N

Uidi
†did

†d

+ 	
ka

�kacka
† cka + 	

ka

tka�dcka
† + ckad†�

+ 	
ka

	
i=1

N

�ka
i �dicka

† + ckadi
†� , �2�

where d, di, and cka annihilate electrons on the transport dot,
the ith control dot, and the mode k on lead a �with energy
�ka�, respectively. In addition, we consider the symmetrized
wideband limit, where the transport dot tunneling rates �

2� 	k�tka�2��−�ka� and the control dot tunneling rates
�
2� 	k��ka

i �2��−�ka� become independent of energy and
lead. The parameters Ui denote the Coulomb interaction be-
tween transport and control sites, whereas Uij represents re-
pulsion between electrons within the control system. We as-
sume that the spectrum of the system Hamiltonian is only
near but not exactly degenerate Ui�U, Uij �Uc, and �i�0.
These simplifications are not crucial for the occurrence of
multistability but rather allow for an analytic treatment in the
following.

B. Liouvillian

We perform our analysis within the Born-Markov-secular
approximation scheme which can be alternatively15,16 de-
rived with a coarse graining method in the limit of infinitely
large coarse graining times �. Provided the system energy
spectrum is nondegenerate and the time scales are larger than
the inverse minimum level splitting, the Liouvillian couples
only the diagonals of the density matrix in the system energy
eigenbasis with each other �see also Ref. 17�. Since we are
interested in observable effects of multistability in the cur-
rent through the transport dot, we introduce a virtual detector
in the right lead R �Ref. 15� via the replacement in the tun-
neling Hamiltonian dckR

† →dckR
†

� b† and ckRd†→ckRd† � b,
where the detector operator b†=	n�n+1��n� increases the de-
tector outcome each time an electron is created in the right
transport lead. Treating the tensor product of dot and detector
Hilbert spaces as the system, we arrive at an n-resolved mas-
ter equation of the form �n��̇�n�
 �̇�n�=L0��n�+L+��n−1�

+L−��n+1�, which couples different realizations of the dot
density matrix—each valid for different particle numbers n
measured in the detector—with each other. This coupled sys-
tem can be further reduced by Fourier-transformation
��� , t�
	n��n��t�ein�, where � is the counting field, which
leads to �̇�� , t�= �L0+e+i�L++e−i�L−���� , t�
L������ , t�.

Due to the permutational symmetry, it is convenient to
denote the corresponding eigenstates for N control sites by
�N ,k ,� ;nd�, where �� �1,2 , . . . , � N

k � arbitrarily labels all the
configurations with 0�k�N electrons distributed on the N
control sites, and nd� �0,1 denotes the occupation of the
transport dot. When we trace out the configuration of the
control dots for a given total number of control charges k by
defining the 2�2 matrix �k�� , t�
	��N ,k ,����� , t��N ,k ,��,
the Liouvillian in this basis assumes for 0�k�N the form

�̇k��,t� = �Ldot��,�d + kU��k��,t� + �L0k
control�k��,t�

+ ��N − k + 1�Jk
in�k−1��,t� + ��k + 1�Jk

out�k+1��,t� ,

�3�

where the introduced superoperators are 2�2 matrices,
which obey J0

in
0 and JN
out
0 at the boundaries. This de-

fines a 2�N+1��2�N+1�-dimensional Liouvillian superop-
erator L��� with a block-tridiagonal structure. The detailed
structure of the reduced Liouvillian superoperators follows
from a rigorous microscopic derivation, it may however also
be understood from simple phenomenological reasoning.

�i� The multistable �fast� part has block-diagonal struc-
ture, where the N+1 block matrices correspond to the Liou-
villian of a single resonant level—shifted by the Coulomb
interaction with k control charges

Ldot��,�� 
 �− fL��� fL
−���

fL��� − fL
−���

� + � − fR��� e+i�fR
−���

e−i�fR��� − fR
−���

� ,

�4�

where fa
−���
�1− fa����. Evidently, when �=0, these matri-

ces give rise to the multistable currents in Eq. �1�. Since we
have traced out the different control dot configurations, it
also becomes obvious that the associated currents Ik are ac-
tually � N

k �-fold degenerate. These degeneracies may be lifted
�and thereby become observable� when the assumed symme-
tries of the Hamiltonian are absent.

�ii� The remaining part of the Liouvillian �which appears
as slow when �	�� consists of the control system jump
superoperators

Jk
in 
 	

a��L̄,R̄

� fa��k − 1�Uc� 0

0 fa��k − 1�Uc + U�
� ,

Jk
out 
 	

a��L̄,R̄

� fa
−�kUc� 0

0 fa
−�kUc + U�

� , �5�

which depend on the control system occupation number, and
a trace-conserving part L0k

control
−kJk−1
out − �N−k�Jk+1

in . The
scalar coefficients in Eq. �3� arise since for any control con-
figuration with k−1 charges there are N−k+1 different pos-
sibilities to obtain a control configuration with k charges.
Similarly, for a configuration with k+1 charges, each single
charge leaving the control sector constitutes an equivalent
jump channel.18 In addition, we note that the control jump
superoperators �5� must assume diagonal form in the sequen-
tial tunneling regime for the basis chosen.
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C. Transport observables

The probability for obtaining n tunneled particles after
time t is given by Pn�t�=Tr���n��t�. It follows that the mo-
ments of Pn�t� may be directly obtained from the Fourier-
transformed Liouvillian by suitable differentiation of the mo-
ment generating function �MGF�

M��,t� = Tr�eL���t�̄ �6�

�where Tr���0 , . . . ,�N�
	k=0
N �k� with respect to the count-

ing field �. The initial density matrix �̄ is typically chosen as
the steady state L�0��̄=0 since one is usually interested in
long-term cumulants. The matrix exponential is significantly
harder to evaluate than the matrix inverse, such that we con-
sider the Laplace transform

M̃��,z� = Tr� 1

z1 − L���
�̄� �7�

of the MGF instead.
For example, the moments of Pn�t� are obtained via

�nk��t� = �− i���kM���,t���=0. �8�

The moments of the current distribution are then simply
given by their time derivative. The full distribution, however,
is obtained by inverse Fourier transform

Pn�t� =
1

2�
�

−�

+�

M��,t�e−in�d� . �9�

IV. RESULTS

A. Analytical steady state

When transport and control dots are coupled to leads with
the same chemical potential �fa= f ā� and �d=0 as well as U
=Uc, the steady state of Eq. �3� at �=0 is �̄
=CN��̄0 , . . . , �̄N�T, where the partial vectors read

�̄k = �N

k
���

�=0

k−1

p��� �
�=k+1

N

2 − p���2 − pk

pk
� , �10�

with pk
 fL�kU�+ fR�kU� and CN follows from normaliza-
tion. The corresponding current I=Tr�L��0��̄ is the
weighted sum of partial currents Ik �Eq. �1��. The current-
voltage characteristic exhibits 2N steps for small tempera-
tures ���1��
NU� which become smeared out for ��
�1 as shown in Fig. 2�a�. Therefore, for sufficiently low
temperatures we are able to probe the number N just by a
current measurement. At larger temperatures, however, this
fails and the counting statistics will provide a proper tool for
that purpose �see Fig. 3 and corresponding discussion�. In the
thermodynamic limit �N→�, U→0� such that the band-
width � stays finite �spectrum becomes continuous as
sketched in inset of Fig. 2�b�� the characteristic is linear for
���1 and �V��� with Ohm’s resistance of 2� /e� �com-
pare Fig. 2�b��.

B. Full counting statistics

Model �2� shows very rich behavior. We, however, choose
some limiting cases to illustrate the multistable properties in
the following:

�i� In the infinite bias limit fL→1 and fR→0, the MGF
coincides with that of a single resonant level, for which we
obtain

FIG. 2. �Color online� Current-voltage characteristics for a non-
trivial nonthermal stationary state �Eq. �10��. �a� For various tem-
peratures �� and N=10; at small temperatures ����1� the number
of control dots N can be probed in a current measurement, whereas
at ���1 one has to make use of counting statistics at t��−1 �see
Fig. 3�. �b� For various N and ��=40; for N→�, U→0, �V���,
and ���1 the current becomes linear I= e�

2�V since transport takes
place through a continuum with finite band-width �
NU �as
sketched in the inset�.
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FIG. 3. �Color online� Probability distribution Pn�t� for the num-
ber of tunneled particles n at different times t �orange region�. For
increasing times ��a�→ �d�� the average of the distribution moves
linearly toward larger n. It proceeds a crossover from multimodal to
unimodal with a transition time of �−1 and becomes �nearly� a
broad Gaussian for t��−1 �d�. For �=0 even the long-term distri-
bution depends on the initial mixture �symbols� here chosen as ana-
lytic continuation of �̄ to �=0, which reflects in the different peak
weights. For comparison: distributions Pn

�k��t� for individual cur-
rents Ik �blue, bold green, bold red, and black curves in the back-
ground�. The saddle-point approximation �dashed lines� only cap-
tures the long-term behavior t��−1. Parameters: N=3, �d=1, �

=0.1, �=0.0001, U=1, �=1, V=V�=5, and V̄→�.
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Pn�0�t� =
e−�t��t�2n−1

2�2n + 1�!
� �2n�2n + 1� + �4n + 2��t + ��t�2�

�11�

and Pn�0�t�=0, such that the counting statistics will not re-
veal any multistable properties �compare Fig. 1�b� for large
V�.

�ii� When the control leads are at infinite bias, i.e.,
f L̄���→1 and f R̄���→0 such that Jk

in=Jk
out=1, and the

transport leads are at high bias �fR����0�, one may for suf-

ficiently low temperatures have fL��d+ �k� k̄�U�=1 and

fL��d+ �k� k̄�U�=0 for some k̄� �1, . . . ,N, which leads to
only two different currents �bistable case�. The detailed form
of the Liouvillian and its counting statistics then depends on

N and k̄, but the whole class of bistable models is amenable

to analytic investigations. In the simplest case of k̄=N=1, we
have for �=0 a bimodal distribution: half of the distribution
follows the evolution of a single resonant level �Eq. �11�� and
the other half remains localized at n=0 for all times. The
situation becomes nontrivial for finite �, which is reflected in

the recursive relation for the Laplace transform P̃n+1�z�
=F�z�P̃n�z� for n�2, where F�z� has four different first or-
der poles, such that—unlike Eq. �11� – the complexity of
Pn�t� will increase with n.

�iii� Under the same �infinite and high bias, respectively�
assumptions we may adjust bias voltage and temperature
such that we can distribute the left-associated Fermi func-
tions in an approximately equidistant manner between zero
and one �such as, e.g., fL��d�=1, fL��d+U�=2 /3,
fL��d+2U�=1 /3, and fL��d+3U�=0 for N=3�, we can ana-
lytically extract the current ��ṅ1�t���= �

4 and the long-term
scaling of the next higher cumulants �for N�0� of Pn�t�

��n2�t��� →
��3N�2 + 3N�� + �2�

16N��� + ��
t ,

��n3�t��� →
�

64
�7 +

3�2�2� + 3��
�N�� + ��2 �t . �12�

These expressions demonstrate that the higher cumulants di-
verge for small � in the long time limit. In the limit of an
infinite number of multistable channels �N→��, however,
this divergence is overshadowed by the exponentially large
degeneracy of intermediate currents: if the control jump ma-
trices in Eq. �3� did not scale with N, the divergence of all
higher than second cumulants would persist also in the limit
N→�.

�iv� Without these assumptions, we can still numerically

perform both the inverse Laplace transform of M̃�� ,z� and a
Fourier integral to obtain Pn�t�, which is typically evaluated
using the saddle-point approximation15 �compare also inset
of Fig. 1�b��. The result in the multistable bias regime of
interest is shown for different times in Fig. 3. Choosing �̄ for
��0 as initial mixture, the statistics is multimodal with N
+1 maxima for t��−1 �Figs. 3�a� and 3�b��. In contrast, the
statistics becomes unimodal for t��−1 �Figs. 3�c� and 3�d��.
In the long term limit, the distribution for ��0 evolves es-

sentially into a broad Gaussian �Fig. 3�d��. This is a general
property of systems with cumulants linearly evolving in
time. In contrast, when �=0, Pn�t� will depend on the initial
configuration for all times. For example, when one initializes
in one of the subspaces k=0, . . . ,N, one will observe the
distributions Pn

�k��t� for the individual currents Ik �curves in
the background in Fig. 3�. Starting in a statistical mixture for
�=0 yields a multimodal distribution even in the long term
limit �symbols in Fig. 3� and leads to a divergence of all
higher-order cumulants.

C. Experimental parameters

For the observation of a multimodal distribution �e.g., bi-
modal in Ref. 13� the measurement time must lie between
�−1 and �−1. The rates in Ref. 13 are of the order of
��1 kHz and ��1 Hz, respectively, such that the time of
measurement can be estimated between 1 ms and 1 s. For a
distance of a hundred nm between transport and control sys-
tem, the Coulomb interaction strength in GaAs can be esti-
mated to U�1.2 meV. Provided the picture of a single
transport level is still valid �i.e., for a significantly larger
on-site Coulomb interaction energy�, pronounced multistabil-
ity should be observable around temperatures of T�14 K.
Larger distances or screened Coulomb interactions would
lead to lower temperatures.

V. CONCLUSIONS AND OUTLOOK

We have studied stochastic multistable transport in terms
of an n-resolved Master equation with a simple and scalable
block-tridiagonal Liouville superoperator �Eq. �3��. Multista-
bility can be revealed by the full counting statistics even
when the first moments are insensitive: for measurement
times smaller than the switching rate between the distinct
transport channels the distributions are multimodal when the
initial state is a mixture of the multiple steady states for �
=0 �this is the case for �̄ for finite ��. This enables direct
access to the number of decoupled nondegenerate subspaces.
For longer times or degenerate subspaces this is not possible.
However, unusually large higher-order cumulants may point
toward intrinsic multistability. In case of sufficiently low
temperatures multistable distributions may become effec-
tively bistable.

However, if the initial mixture is strongly localized within
one of the multiple subspaces �this would be a consequence
of a projective measurement�, a particle-number measure-
ment would result in the associated current with high prob-
ability and all other currents with low probabilities. Conse-
quently, a sequence of repeated measurements would yield
the switching dynamics observed for single-charge counting
detectors.13,19,20

We finally remark that multistable behavior can also
emerge due to the effect of coherences.15
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